Skip to contents

Overview

Joining data tables with joyn is particularly convenient as it allows you to analyze/be aware of the quality of the merging.

This vignette explores dplyr-like join functions available in joyn. Their major objective is to let you employ a syntax you are supposedly already familiar with - the dplyr one - while at the same time benefiting of the additional tools that joyn offers. That is, obtaining additional information and verification of the joining.

There are four types of dplyr-like join functions in joyn:

Each of them is a wrapper that works in a similar way as the corresponding dplyr function.


library(joyn)
#> 
#> Attaching package: 'joyn'
#> The following object is masked from 'package:base':
#> 
#>     merge
library(data.table)

Rationale


x1 <- data.table(id  = c(1L, 1L, 2L, 3L, NA_integer_),
                 t   = c(1L, 2L, 1L, 2L, NA_integer_),
                 x   = 11:15)

y1 <- data.table(id  = c(1,2, 4),
                 y   = c(11L, 15L, 16))

Suppose you want to perform a simple left join between tables x1 and y1.

With joyn you have two possibilities:

In addition, you could use dplyr::left_join() or base R merging functions.

Consider these three options:


# Option 1

joyn(x          = x1, 
     y          = y1, 
     keep       = "left",
     match_type = "m:1")
#> 
#> ── JOYn Report ──
#> 
#>   .joyn n percent
#> 1     x 2     40%
#> 2     y 1     20%
#> 3 x & y 2     40%
#> 4 total 5    100%
#> ────────────────────────────────────────────────────────── End of JOYn report ──
#> ℹ Note: Joyn's report available in variable .joyn
#> ℹ Note: Removing key variables id from id and y
#>       id     t     x     y  .joyn
#>    <num> <int> <int> <num> <fctr>
#> 1:     1     1    11    11  x & y
#> 2:     1     2    12    11  x & y
#> 3:     2     1    13    15  x & y
#> 4:     3     2    14    NA      x
#> 5:    NA    NA    15    NA      x

# Option 2 

joyn::left_join(x            = x1, 
                y            = y1, 
                relationship = "many-to-one") 
#> 
#> ── JOYn Report ──
#> 
#>   .joyn n percent
#> 1     x 2     40%
#> 2     y 1     20%
#> 3 x & y 2     40%
#> 4 total 5    100%
#> ────────────────────────────────────────────────────────── End of JOYn report ──
#> ℹ Note: Joyn's report available in variable .joyn
#> ℹ Note: Removing key variables id from id and y
#> ⚠ Warning: joyn does not currently allow inequality joins, so keep = NULL will
#> retain only keys in x
#>       id     t     x     y  .joyn
#>    <num> <int> <int> <num> <fctr>
#> 1:     1     1    11    11  x & y
#> 2:     1     2    12    11  x & y
#> 3:     2     1    13    15  x & y
#> 4:     3     2    14    NA      x
#> 5:    NA    NA    15    NA      x

# Option 3

dplyr::left_join(x            = x1, 
                 y            = y1, 
                 relationship = "many-to-one") 
#> Joining with `by = join_by(id)`
#>       id     t     x     y
#>    <num> <int> <int> <num>
#> 1:     1     1    11    11
#> 2:     1     2    12    11
#> 3:     2     1    13    15
#> 4:     3     2    14    NA
#> 5:    NA    NA    15    NA

Comparing the results, the same returning data table is produced.

However, joyn::left_join() allows you to enjoy both the intuitive syntax from dplyr and the additional tools from joyn. These include additional options to customize how the join is performed, the availability of the joyn report, messages informing you on time of execution and the status of the join as well as the execution of various checks during the merging. (For additional information on each of these joyn’s features, please take a look at all the other articles in this website.)

Some examples

1. Left join

ℹ️ Left joins return in the output table all rows from x, i.e., the left table, and only matching rows from y, i.e., the right table.


# Data tables to be joined 

df1 <- data.frame(id = c(1L, 1L, 2L, 3L, NA_integer_, NA_integer_),
                  t  = c(1L, 2L, 1L, 2L, NA_integer_, 4L),
                  x  = 11:16)

df2 <- data.frame(id = c(1,2, 4, NA_integer_, 8),
                  y  = c(11L, 15L, 16, 17L, 18L),
                  t  = c(13:17))

Example usage of some of the joyn’s additional options:

Updating NAs in left table

Using the update_NAs argument from joyn you can update the values that are NA in the t variable in the left table with the actual values from the matching column t in the right one


left_join(x            = df1, 
          y            = df2,
          relationship = "many-to-one", 
          by           = "id",
          update_NAs   = TRUE)
#> 
#> ── JOYn Report ──
#> 
#>         .joyn     n percent
#>        <char> <int>  <char>
#> 1:          x     1   16.7%
#> 2:      x & y     4   66.7%
#> 3: NA updated     1   16.7%
#> 4:      total     6    100%
#> ────────────────────────────────────────────────────────── End of JOYn report ──
#> ℹ Note: Joyn's report available in variable .joyn
#> ℹ Note: Removing key variables id from id, y, and t
#>   id t.x  x  y t.y      .joyn
#> 1  1   1 11 11  13      x & y
#> 2  1   2 12 11  13      x & y
#> 3  2   1 13 15  14      x & y
#> 4  3   2 14 NA  NA          x
#> 5 NA  16 15 17  16 NA updated
#> 6 NA   4 16 17  16      x & y

Specifying which variables to keep from the right table after the join


left_join(x              = df1, 
          y              = df2,
          relationship   = "many-to-one", 
          by             = "id", 
          y_vars_to_keep = "y")
#> 
#> ── JOYn Report ──
#> 
#>   .joyn n percent
#> 1     x 1   16.7%
#> 2     y 2   33.3%
#> 3 x & y 3     50%
#> 4 total 6    100%
#> ────────────────────────────────────────────────────────── End of JOYn report ──
#> ℹ Note: Joyn's report available in variable .joyn
#>   id  t  x  y .joyn
#> 1  1  1 11 11 x & y
#> 2  1  2 12 11 x & y
#> 3  2  1 13 15 x & y
#> 4  3  2 14 NA     x
#> 5 NA NA 15 17 x & y
#> 6 NA  4 16 17 x & y

2. Right join

ℹ️ Right joins return in the output table matching rows from x, i.e., the left table, and all rows from y, i.e., the right table.

Example usage of some of the joyn’s additional options:

Specifying a name for the reporting variable


right_join(x            = df1, 
          y            = df2,
          relationship = "many-to-one", 
          by           = "id",
          reportvar    = "right.joyn")
#> 
#> ── JOYn Report ──
#> 
#>   right.joyn n percent
#> 1          x 1   14.3%
#> 2          y 2   28.6%
#> 3      x & y 4   57.1%
#> 4      total 7    100%
#> ────────────────────────────────────────────────────────── End of JOYn report ──
#> ℹ Note: Joyn's report available in variable right.joyn
#> ℹ Note: Removing key variables id from id, y, and t
#>   id t.x  x  y t.y right.joyn
#> 1  1   1 11 11  13      x & y
#> 2  1   2 12 11  13      x & y
#> 3  2   1 13 15  14      x & y
#> 4  4  NA NA 16  15          y
#> 5  8  NA NA 18  17          y
#> 6 NA  NA 15 17  16      x & y
#> 7 NA   4 16 17  16      x & y

Updating values in common variables

By setting update_values = TRUE, all values in x (both NAs and not) will be updated with the actual values of variables in y with the same name as the ones in x. You can then see the status of the update in the reporting variable.


right_join(x            = df1, 
           y            = df2,
           relationship = "many-to-one", 
           by           = "id",
           reportvar    = "right.joyn")
#> 
#> ── JOYn Report ──
#> 
#>   right.joyn n percent
#> 1          x 1   14.3%
#> 2          y 2   28.6%
#> 3      x & y 4   57.1%
#> 4      total 7    100%
#> ────────────────────────────────────────────────────────── End of JOYn report ──
#> ℹ Note: Joyn's report available in variable right.joyn
#> ℹ Note: Removing key variables id from id, y, and t
#>   id t.x  x  y t.y right.joyn
#> 1  1   1 11 11  13      x & y
#> 2  1   2 12 11  13      x & y
#> 3  2   1 13 15  14      x & y
#> 4  4  NA NA 16  15          y
#> 5  8  NA NA 18  17          y
#> 6 NA  NA 15 17  16      x & y
#> 7 NA   4 16 17  16      x & y

3. Full join

ℹ️ Full joins return in the output table all rows, both matching and non matching rows from x, i.e., the left table, and y, i.e., the right table.


full_join(x = x1, 
          y = y1, 
          relationship = "many-to-one", 
          keep = TRUE)
#> 
#> ── JOYn Report ──
#> 
#>   .joyn n percent
#> 1     x 2   33.3%
#> 2     y 1   16.7%
#> 3 x & y 3     50%
#> 4 total 6    100%
#> ────────────────────────────────────────────────────────── End of JOYn report ──
#> ℹ Note: Joyn's report available in variable .joyn
#> ℹ Note: Removing key variables id from id.y, id, and y
#>       id     t     x  id.y     y  .joyn
#>    <num> <int> <int> <num> <num> <fctr>
#> 1:     1     1    11     1    11  x & y
#> 2:     1     2    12     1    11  x & y
#> 3:     2     1    13     2    15  x & y
#> 4:     3     2    14    NA    NA      x
#> 5:     4    NA    NA     4    16      y
#> 6:    NA    NA    15    NA    NA      x

4. Inner join

ℹ️ Inner joins return in the output table only rows that match between x, i.e., the left table, and y, i.e., the right table.

Simple inner join


inner_join(x            = df1, 
           y             = df2,
           relationship  = "many-to-one", 
           by            = "id")
#> 
#> ── JOYn Report ──
#> 
#>   .joyn n percent
#> 1     x 1     20%
#> 2     y 2     40%
#> 3 x & y 2     40%
#> 4 total 5    100%
#> ────────────────────────────────────────────────────────── End of JOYn report ──
#> ℹ Note: Joyn's report available in variable .joyn
#> ℹ Note: Removing key variables id from id, y, and t
#>   id t.x  x  y t.y .joyn
#> 1  1   1 11 11  13 x & y
#> 2  1   2 12 11  13 x & y
#> 3  2   1 13 15  14 x & y
#> 4 NA  NA 15 17  16 x & y
#> 5 NA   4 16 17  16 x & y